Eigen
3.4.90 (git rev 67eeba6e720c5745abc77ae6c92ce0a44aa7b7ae)
|
Represents an homogeneous transformation in a N dimensional space.
This is defined in the Geometry module.
Scalar_ | the scalar type, i.e., the type of the coefficients |
Dim_ | the dimension of the space |
Mode_ | the type of the transformation. Can be:
|
Options_ | has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. These Options are passed directly to the underlying matrix type. |
The homography is internally represented and stored by a matrix which is available through the matrix() method. To understand the behavior of this class you have to think a Transform object as its internal matrix representation. The chosen convention is right multiply:
Therefore, an affine transformation matrix M is shaped like this:
\( \left( \begin{array}{cc} linear & translation\\ 0 ... 0 & 1 \end{array} \right) \)
Note that for a projective transformation the last row can be anything, and then the interpretation of different parts might be slightly different.
However, unlike a plain matrix, the Transform class provides many features simplifying both its assembly and usage. In particular, it can be composed with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) and can be directly used to transform implicit homogeneous vectors. All these operations are handled via the operator*. For the composition of transformations, its principle consists to first convert the right/left hand sides of the product to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. Of course, internally, operator* tries to perform the minimal number of operations according to the nature of each terms. Likewise, when applying the transform to points, the latters are automatically promoted to homogeneous vectors before doing the matrix product. The conventions to homogeneous representations are performed as follow:
Translation t (Dim)x(1): \( \left( \begin{array}{cc} I & t \\ 0\,...\,0 & 1 \end{array} \right) \)
Rotation R (Dim)x(Dim): \( \left( \begin{array}{cc} R & 0\\ 0\,...\,0 & 1 \end{array} \right) \)
Scaling DiagonalMatrix S (Dim)x(Dim): \( \left( \begin{array}{cc} S & 0\\ 0\,...\,0 & 1 \end{array} \right) \)
Column point v (Dim)x(1): \( \left( \begin{array}{c} v\\ 1 \end{array} \right) \)
Set of column points V1...Vn (Dim)x(n): \( \left( \begin{array}{ccc} v_1 & ... & v_n\\ 1 & ... & 1 \end{array} \right) \)
The concatenation of a Transform object with any kind of other transformation always returns a Transform object.
A little exception to the "as pure matrix product" rule is the case of the transformation of non homogeneous vectors by an affine transformation. In that case the last matrix row can be ignored, and the product returns non homogeneous vectors.
Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. The solution is either to use a Dim x Dynamic matrix or explicitly request a vector transformation by making the vector homogeneous:
Note that there is zero overhead.
Conversion methods from/to Qt's QMatrix and QTransform are available if the preprocessor token EIGEN_QT_SUPPORT is defined.
This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_TRANSFORM_PLUGIN
.
Public Types | |
typedef std::conditional_t< int(Mode)==int(AffineCompact), MatrixType &, Block< MatrixType, Dim, HDim > > | AffinePart |
typedef std::conditional_t< int(Mode)==int(AffineCompact), const MatrixType &, const Block< const MatrixType, Dim, HDim > > | ConstAffinePart |
typedef const Block< ConstMatrixType, Dim, Dim, int(Mode)==(AffineCompact) &&(int(Options)&RowMajor)==0 > | ConstLinearPart |
typedef const MatrixType | ConstMatrixType |
typedef const Block< ConstMatrixType, Dim, 1,!(internal::traits< MatrixType >::Flags &RowMajorBit)> | ConstTranslationPart |
typedef Eigen::Index | Index |
typedef Matrix< Scalar, Dim, Dim, Options > | LinearMatrixType |
typedef Block< MatrixType, Dim, Dim, int(Mode)==(AffineCompact) &&(int(Options)&RowMajor)==0 > | LinearPart |
typedef internal::make_proper_matrix_type< Scalar, Rows, HDim, Options >::type | MatrixType |
typedef Scalar_ | Scalar |
typedef Transform< Scalar, Dim, TransformTimeDiagonalMode > | TransformTimeDiagonalReturnType |
typedef Block< MatrixType, Dim, 1,!(internal::traits< MatrixType >::Flags &RowMajorBit)> | TranslationPart |
typedef Translation< Scalar, Dim > | TranslationType |
typedef Matrix< Scalar, Dim, 1 > | VectorType |
Public Member Functions | |
AffinePart | affine () |
ConstAffinePart | affine () const |
template<typename NewScalarType > | |
internal::cast_return_type< Transform, Transform< NewScalarType, Dim, Mode, Options > >::type | cast () const |
template<typename RotationMatrixType , typename ScalingMatrixType > | |
void | computeRotationScaling (RotationMatrixType *rotation, ScalingMatrixType *scaling) const |
template<typename ScalingMatrixType , typename RotationMatrixType > | |
void | computeScalingRotation (ScalingMatrixType *scaling, RotationMatrixType *rotation) const |
Scalar * | data () |
const Scalar * | data () const |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE (Scalar_, Dim_==Dynamic ? Dynamic :(Dim_+1) *(Dim_+1)) enum | |
template<typename PositionDerived , typename OrientationType , typename ScaleDerived > | |
Transform< Scalar, Dim, Mode, Options > & | fromPositionOrientationScale (const MatrixBase< PositionDerived > &position, const OrientationType &orientation, const MatrixBase< ScaleDerived > &scale) |
Transform | inverse (TransformTraits traits=(TransformTraits) Mode) const |
bool | isApprox (const Transform &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const |
LinearPart | linear () |
ConstLinearPart | linear () const |
void | makeAffine () |
MatrixType & | matrix () |
const MatrixType & | matrix () const |
Scalar & | operator() (Index row, Index col) |
Scalar | operator() (Index row, Index col) const |
template<typename DiagonalDerived > | |
const TransformTimeDiagonalReturnType | operator* (const DiagonalBase< DiagonalDerived > &b) const |
template<typename OtherDerived > | |
const internal::transform_right_product_impl< Transform, OtherDerived >::ResultType | operator* (const EigenBase< OtherDerived > &other) const |
const Transform | operator* (const Transform &other) const |
template<int OtherMode, int OtherOptions> | |
internal::transform_transform_product_impl< Transform, Transform< Scalar, Dim, OtherMode, OtherOptions > >::ResultType | operator* (const Transform< Scalar, Dim, OtherMode, OtherOptions > &other) const |
template<typename OtherDerived > | |
Transform & | operator= (const EigenBase< OtherDerived > &other) |
Transform & | operator= (const QTransform &other) |
template<typename RotationType > | |
Transform< Scalar, Dim, Mode, Options > & | prerotate (const RotationType &rotation) |
template<typename OtherDerived > | |
Transform< Scalar, Dim, Mode, Options > & | prescale (const MatrixBase< OtherDerived > &other) |
Transform & | prescale (const Scalar &s) |
Transform & | preshear (const Scalar &sx, const Scalar &sy) |
template<typename OtherDerived > | |
Transform< Scalar, Dim, Mode, Options > & | pretranslate (const MatrixBase< OtherDerived > &other) |
template<typename RotationType > | |
Transform< Scalar, Dim, Mode, Options > & | rotate (const RotationType &rotation) |
RotationReturnType | rotation () const |
template<typename OtherDerived > | |
Transform< Scalar, Dim, Mode, Options > & | scale (const MatrixBase< OtherDerived > &other) |
Transform & | scale (const Scalar &s) |
void | setIdentity () |
Transform & | shear (const Scalar &sx, const Scalar &sy) |
QTransform | toQTransform (void) const |
Transform () | |
template<typename OtherDerived > | |
Transform (const EigenBase< OtherDerived > &other) | |
Transform (const QTransform &other) | |
template<typename OtherScalarType > | |
Transform (const Transform< OtherScalarType, Dim, Mode, Options > &other) | |
template<typename OtherDerived > | |
Transform< Scalar, Dim, Mode, Options > & | translate (const MatrixBase< OtherDerived > &other) |
TranslationPart | translation () |
ConstTranslationPart | translation () const |
Static Public Member Functions | |
static const Transform | Identity () |
Returns an identity transformation. More... | |
typedef std::conditional_t<int(Mode)==int(AffineCompact), MatrixType&, Block<MatrixType,Dim,HDim> > Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::AffinePart |
type of read/write reference to the affine part of the transformation
typedef std::conditional_t<int(Mode)==int(AffineCompact), const MatrixType&, const Block<const MatrixType,Dim,HDim> > Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::ConstAffinePart |
type of read reference to the affine part of the transformation
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::ConstLinearPart |
type of read reference to the linear part of the transformation
typedef const MatrixType Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::ConstMatrixType |
constified MatrixType
typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::ConstTranslationPart |
type of a read reference to the translation part of the rotation
typedef Eigen::Index Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::Index |
typedef Matrix<Scalar,Dim,Dim,Options> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::LinearMatrixType |
type of the matrix used to represent the linear part of the transformation
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::LinearPart |
type of read/write reference to the linear part of the transformation
typedef internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::MatrixType |
type of the matrix used to represent the transformation
typedef Scalar_ Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::Scalar |
the scalar type of the coefficients
typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::TransformTimeDiagonalReturnType |
The return type of the product between a diagonal matrix and a transform
typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::TranslationPart |
type of a read/write reference to the translation part of the rotation
typedef Translation<Scalar,Dim> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::TranslationType |
corresponding translation type
typedef Matrix<Scalar,Dim,1> Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::VectorType |
type of a vector
|
inline |
Default constructor without initialization of the meaningful coefficients. If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1]
|
inlineexplicit |
Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix.
|
inline |
Initializes *this
from a QTransform assuming the dimension is 2.
This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
inlineexplicit |
Copy constructor with scalar type conversion
|
inline |
|
inline |
|
inline |
*this
with scalar type casted to NewScalarType Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
void Eigen::Transform< Scalar, Dim, Mode, Options >::computeRotationScaling | ( | RotationMatrixType * | rotation, |
ScalingMatrixType * | scaling | ||
) | const |
decomposes the linear part of the transformation as a product rotation x scaling, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This is defined in the SVD module.
void Eigen::Transform< Scalar, Dim, Mode, Options >::computeScalingRotation | ( | ScalingMatrixType * | scaling, |
RotationMatrixType * | rotation | ||
) | const |
decomposes the linear part of the transformation as a product scaling x rotation, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This is defined in the SVD module.
|
inline |
|
inline |
|
inline |
< space dimension in which the transformation holds
< size of a respective homogeneous vector
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::fromPositionOrientationScale | ( | const MatrixBase< PositionDerived > & | position, |
const OrientationType & | orientation, | ||
const MatrixBase< ScaleDerived > & | scale | ||
) |
Convenient method to set *this
from a position, orientation and scale of a 3D object.
|
inlinestatic |
Returns an identity transformation.
|
inline |
*this
.hint | allows to optimize the inversion process when the transformation is known to be not a general transformation (optional). The possible values are:
|
|
inline |
true
if *this
is approximately equal to other, within the precision determined by prec.
|
inline |
|
inline |
|
inline |
Sets the last row to [0 ... 0 1]
|
inline |
|
inline |
|
inline |
shortcut for m_matrix(row,col);
|
inline |
shortcut for m_matrix(row,col);
|
inline |
The rhs diagonal matrix is interpreted as an affine scaling transformation. The product results in a Transform of the same type (mode) as the lhs only if the lhs mode is no isometry. In that case, the returned transform is an affinity.
|
inline |
*this
and a matrix expression other.The right-hand-side other can be either:
Moreover, if *this
represents an affine transformation (i.e., Mode!=Projective), then other can also be:
In all cases, the return type is a matrix or vector of same sizes as the right-hand-side other.
If you want to interpret other as a linear or affine transformation, then first convert it to a Transform<> type, or do your own cooking.
Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
|
inline |
Concatenates two transformations
|
inline |
Concatenates two different transformations
|
inline |
Set *this
from a Dim^2 or (Dim+1)^2 matrix.
|
inline |
Set *this
from a QTransform assuming the dimension is 2.
This function is available only if the token EIGEN_QT_SUPPORT is defined.
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::prerotate | ( | const RotationType & | rotation | ) |
Applies on the left the rotation represented by the rotation rotation to *this
and returns a reference to *this
.
See rotate() for further details.
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::prescale | ( | const MatrixBase< OtherDerived > & | other | ) |
Applies on the left the non uniform scale transformation represented by the vector other to *this
and returns a reference to *this
.
|
inline |
Applies on the left a uniform scale of a factor c to *this
and returns a reference to *this
.
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::preshear | ( | const Scalar & | sx, |
const Scalar & | sy | ||
) |
Applies on the left the shear transformation represented by the vector other to *this
and returns a reference to *this
.
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::pretranslate | ( | const MatrixBase< OtherDerived > & | other | ) |
Applies on the left the translation matrix represented by the vector other to *this
and returns a reference to *this
.
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::rotate | ( | const RotationType & | rotation | ) |
Applies on the right the rotation represented by the rotation rotation to *this
and returns a reference to *this
.
The template parameter RotationType is the type of the rotation which must be known by internal::toRotationMatrix<>.
Natively supported types includes:
This mechanism is easily extendable to support user types such as Euler angles, or a pair of Quaternion for 4D rotations.
Transform< Scalar, Dim, Mode, Options >::RotationReturnType Eigen::Transform< Scalar, Dim, Mode, Options >::rotation |
If Mode==Isometry, then this method is an alias for linear(), otherwise it calls computeRotationScaling() to extract the rotation through a SVD decomposition.
This is defined in the SVD module.
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::scale | ( | const MatrixBase< OtherDerived > & | other | ) |
Applies on the right the non uniform scale transformation represented by the vector other to *this
and returns a reference to *this
.
|
inline |
Applies on the right a uniform scale of a factor c to *this
and returns a reference to *this
.
|
inline |
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::shear | ( | const Scalar & | sx, |
const Scalar & | sy | ||
) |
Applies on the right the shear transformation represented by the vector other to *this
and returns a reference to *this
.
|
inline |
*this
assuming the dimension is 2.This function is available only if the token EIGEN_QT_SUPPORT is defined.
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::translate | ( | const MatrixBase< OtherDerived > & | other | ) |
Applies on the right the translation matrix represented by the vector other to *this
and returns a reference to *this
.
|
inline |
|
inline |