10#ifndef EIGEN_MATRIX_SQUARE_ROOT
11#define EIGEN_MATRIX_SQUARE_ROOT
13#include "./InternalHeaderCheck.h"
21template <
typename MatrixType,
typename ResultType>
22void matrix_sqrt_quasi_triangular_2x2_diagonal_block(
const MatrixType& T,
Index i, ResultType& sqrtT)
26 typedef typename traits<MatrixType>::Scalar Scalar;
27 Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
28 EigenSolver<Matrix<Scalar,2,2> > es(block);
29 sqrtT.template block<2,2>(i,i)
30 = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).
real();
36template <
typename MatrixType,
typename ResultType>
37void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(
const MatrixType& T,
Index i,
Index j, ResultType& sqrtT)
39 typedef typename traits<MatrixType>::Scalar Scalar;
40 Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
41 sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
45template <
typename MatrixType,
typename ResultType>
46void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(
const MatrixType& T,
Index i,
Index j, ResultType& sqrtT)
48 typedef typename traits<MatrixType>::Scalar Scalar;
49 Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
51 rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
52 Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
53 A += sqrtT.template block<2,2>(j,j).transpose();
54 sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
58template <
typename MatrixType,
typename ResultType>
59void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(
const MatrixType& T,
Index i,
Index j, ResultType& sqrtT)
61 typedef typename traits<MatrixType>::Scalar Scalar;
62 Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
64 rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
65 Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
66 A += sqrtT.template block<2,2>(i,i);
67 sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
71template <
typename MatrixType>
72void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X,
const MatrixType& A,
const MatrixType& B,
const MatrixType& C)
74 typedef typename traits<MatrixType>::Scalar Scalar;
75 Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
76 coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
77 coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
78 coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
79 coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
80 coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
81 coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
82 coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
83 coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
84 coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
85 coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
86 coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
87 coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
89 Matrix<Scalar,4,1> rhs;
90 rhs.coeffRef(0) = C.coeff(0,0);
91 rhs.coeffRef(1) = C.coeff(0,1);
92 rhs.coeffRef(2) = C.coeff(1,0);
93 rhs.coeffRef(3) = C.coeff(1,1);
95 Matrix<Scalar,4,1> result;
96 result = coeffMatrix.fullPivLu().solve(rhs);
98 X.coeffRef(0,0) = result.coeff(0);
99 X.coeffRef(0,1) = result.coeff(1);
100 X.coeffRef(1,0) = result.coeff(2);
101 X.coeffRef(1,1) = result.coeff(3);
105template <
typename MatrixType,
typename ResultType>
106void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(
const MatrixType& T,
Index i,
Index j, ResultType& sqrtT)
108 typedef typename traits<MatrixType>::Scalar Scalar;
109 Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
110 Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
111 Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
113 C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
114 Matrix<Scalar,2,2> X;
115 matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
116 sqrtT.template block<2,2>(i,j) = X;
121template <
typename MatrixType,
typename ResultType>
122void matrix_sqrt_quasi_triangular_diagonal(
const MatrixType& T, ResultType& sqrtT)
125 const Index size = T.rows();
126 for (
Index i = 0; i < size; i++) {
127 if (i == size - 1 || T.coeff(i+1, i) == 0) {
128 eigen_assert(T(i,i) >= 0);
129 sqrtT.coeffRef(i,i) =
sqrt(T.coeff(i,i));
132 matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
140template <
typename MatrixType,
typename ResultType>
141void matrix_sqrt_quasi_triangular_off_diagonal(
const MatrixType& T, ResultType& sqrtT)
143 const Index size = T.rows();
144 for (
Index j = 1; j < size; j++) {
145 if (T.coeff(j, j-1) != 0)
147 for (
Index i = j-1; i >= 0; i--) {
148 if (i > 0 && T.coeff(i, i-1) != 0)
150 bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
151 bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
152 if (iBlockIs2x2 && jBlockIs2x2)
153 matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
154 else if (iBlockIs2x2 && !jBlockIs2x2)
155 matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
156 else if (!iBlockIs2x2 && jBlockIs2x2)
157 matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
158 else if (!iBlockIs2x2 && !jBlockIs2x2)
159 matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
181template <
typename MatrixType,
typename ResultType>
184 eigen_assert(
arg.rows() ==
arg.cols());
185 result.resize(
arg.rows(),
arg.cols());
186 internal::matrix_sqrt_quasi_triangular_diagonal(
arg, result);
187 internal::matrix_sqrt_quasi_triangular_off_diagonal(
arg, result);
205template <
typename MatrixType,
typename ResultType>
209 typedef typename MatrixType::Scalar Scalar;
211 eigen_assert(
arg.rows() ==
arg.cols());
215 result.resize(
arg.rows(),
arg.cols());
216 for (
Index i = 0; i <
arg.rows(); i++) {
217 result.coeffRef(i,i) =
sqrt(
arg.coeff(i,i));
219 for (
Index j = 1; j <
arg.cols(); j++) {
220 for (
Index i = j-1; i >= 0; i--) {
222 Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
224 result.coeffRef(i,j) = (
arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
239template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
240struct matrix_sqrt_compute
249 template <
typename ResultType>
static void run(
const MatrixType &
arg, ResultType &result);
255template <
typename MatrixType>
256struct matrix_sqrt_compute<MatrixType, 0>
258 typedef typename MatrixType::PlainObject PlainType;
259 template <
typename ResultType>
260 static void run(
const MatrixType &
arg, ResultType &result)
262 eigen_assert(
arg.rows() ==
arg.cols());
265 const RealSchur<PlainType> schurOfA(
arg);
266 const PlainType& T = schurOfA.matrixT();
267 const PlainType& U = schurOfA.matrixU();
270 PlainType sqrtT = PlainType::Zero(
arg.rows(),
arg.cols());
274 result = U * sqrtT * U.adjoint();
281template <
typename MatrixType>
282struct matrix_sqrt_compute<MatrixType, 1>
284 typedef typename MatrixType::PlainObject PlainType;
285 template <
typename ResultType>
286 static void run(
const MatrixType &
arg, ResultType &result)
288 eigen_assert(
arg.rows() ==
arg.cols());
291 const ComplexSchur<PlainType> schurOfA(
arg);
292 const PlainType& T = schurOfA.matrixT();
293 const PlainType& U = schurOfA.matrixU();
300 result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
319:
public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
322 typedef typename internal::ref_selector<Derived>::type DerivedNested;
337 template <
typename ResultType>
338 inline void evalTo(ResultType& result)
const
340 typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
341 typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
342 DerivedEvalType tmp(m_src);
343 internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
346 Index rows()
const {
return m_src.rows(); }
347 Index cols()
const {
return m_src.cols(); }
350 const DerivedNested m_src;
354template<
typename Derived>
355struct traits<MatrixSquareRootReturnValue<Derived> >
357 typedef typename Derived::PlainObject ReturnType;
361template <
typename Derived>
364 eigen_assert(rows() == cols());
365 return MatrixSquareRootReturnValue<Derived>(derived());
const MatrixSquareRootReturnValue< Derived > sqrt() const
Definition: MatrixSquareRoot.h:362
Proxy for the matrix square root of some matrix (expression).
Definition: MatrixSquareRoot.h:320
void evalTo(ResultType &result) const
Compute the matrix square root.
Definition: MatrixSquareRoot.h:338
MatrixSquareRootReturnValue(const Derived &src)
Constructor.
Definition: MatrixSquareRoot.h:330
void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
Compute matrix square root of quasi-triangular matrix.
Definition: MatrixSquareRoot.h:182
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
Compute matrix square root of triangular matrix.
Definition: MatrixSquareRoot.h:206
Namespace containing all symbols from the Eigen library.
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_real_op< typename Derived::Scalar >, const Derived > real(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_arg_op< typename Derived::Scalar >, const Derived > arg(const Eigen::ArrayBase< Derived > &x)