Line 0
Link Here
|
|
|
1 |
// This file is part of Eigen, a lightweight C++ template library |
2 |
// for linear algebra. |
3 |
// |
4 |
// Copyright (C) 2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> |
5 |
// |
6 |
// This Source Code Form is subject to the terms of the Mozilla |
7 |
// Public License v. 2.0. If a copy of the MPL was not distributed |
8 |
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/ |
9 |
|
10 |
#include "lapack_common.h" |
11 |
#include <Eigen/QR> |
12 |
|
13 |
// computes a QR factorization of a general M-by-N matrix A |
14 |
EIGEN_LAPACK_FUNC(geqrf, (int *m, int *n, Scalar *a, int *lda, Scalar *tau, Scalar *work, |
15 |
int *lwork, int *info)) |
16 |
{ |
17 |
bool query_size = (*lwork == -1); |
18 |
*info = 0; |
19 |
|
20 |
if(*m < 0) *info = -1; |
21 |
else if(*n < 0) *info = -2; |
22 |
else if(*lda < (std::max)(1 |
23 |
, *m)) *info = -4; |
24 |
else if((*lwork < (std::max)(1, *n)) && !query_size) *info = -7; |
25 |
if (*info != 0) |
26 |
{ |
27 |
int e = -*info; |
28 |
return xerbla_(SCALAR_SUFFIX_UP"GEQRF", &e, 6); |
29 |
} |
30 |
// if (query_size) |
31 |
// { |
32 |
// *lwork = 0; |
33 |
// return 0; |
34 |
// } |
35 |
if (*m == 0 || *n == 0) |
36 |
{ |
37 |
work[0] = 1; |
38 |
return 0; |
39 |
} |
40 |
MatrixType mat(a, *m, *n, OuterStride<>(*lda)); |
41 |
CompactVectorType hcoeffs(tau, (std::min)(*m,*n)); |
42 |
householder_qr_inplace_blocked(mat, hcoeffs, 32, work); |
43 |
hcoeffs = hcoeffs.conjugate(); |
44 |
return 0; |
45 |
} |
46 |
|
47 |
/* Compute the QR factorization with column pivoting */ |
48 |
/* FIXME xgeqpf is deprecated in LAPACK, We should define xgeqp3 instead |
49 |
* However, the implementation of column pivoting QR in Eigen is more similar to xgeqpf than xgeqp3, in terms of performance (BLAS3 operations) |
50 |
*/ |
51 |
EIGEN_LAPACK_FUNC(geqpf, (int *m, int *n, Scalar *a, int *lda, int *jpvt, Scalar *tau, |
52 |
Scalar *work, int *info)) |
53 |
{ |
54 |
*info = 0; |
55 |
if(*m < 0) *info = -1; |
56 |
else if(*n < 0) *info = -2; |
57 |
else if(*lda < (std::max)(1, *m)) *info = -4; |
58 |
|
59 |
if (*info != 0) |
60 |
{ |
61 |
int e = -*info; |
62 |
return xerbla_(SCALAR_SUFFIX_UP"GEQPF", &e, 6); |
63 |
} |
64 |
if((std::min)(*m, *n) == 0) return 0; |
65 |
|
66 |
MatrixType qr(a, *m, *n, OuterStride<>(*lda)); |
67 |
CompactVectorType hcoeffs(tau, (std::min)(*m, *n)); |
68 |
|
69 |
Matrix<RealScalar, Dynamic, 1> colSqNorms; |
70 |
Matrix<int, Dynamic, 1> colsTranspositions; |
71 |
CompactVectorType temp(work, *n); |
72 |
RealScalar maxpivot; |
73 |
typename MatrixType::Index nonzero_pivots, det_pq; |
74 |
|
75 |
//FIXME Find a way to deal with 'free' columns specified in jpvt. |
76 |
PermutationMatrix<Dynamic, Dynamic, int> colsPerm(*n); |
77 |
|
78 |
// Call ColPivHouseholder kernel |
79 |
colpivhouseholder_qr_inplace(qr, hcoeffs, colSqNorms, colsTranspositions, |
80 |
colsPerm, temp, maxpivot, nonzero_pivots, det_pq); |
81 |
hcoeffs = hcoeffs.conjugate(); |
82 |
for(int i = 0; i < *n; i++) jpvt[i] = colsPerm.indices()(i)+1; |
83 |
|
84 |
return 0; |
85 |
} |
86 |
template<typename T> |
87 |
int apply_reflectors(const char *method, char *side, char *trans, int *m, int *n, int *k, |
88 |
T *a, int *lda, T *tau, T *c, int *ldc, T *work, int *lwork, int *info) |
89 |
{ |
90 |
|
91 |
*info = 0; |
92 |
bool query_size = (*lwork==-1); |
93 |
int nq; // order of Q |
94 |
int nw; // minimum dimension of Work |
95 |
if(*side == 'L') |
96 |
{ |
97 |
nq = *m; |
98 |
nw = *n; |
99 |
} else { |
100 |
nq = *n; |
101 |
nw = *m; |
102 |
} |
103 |
if( (*side != 'L') && (*side != 'R') ) *info = -1; |
104 |
else if( (*trans != 'N') && (*trans != 'T') && (*trans != 'C') ) *info = -2; |
105 |
else if (*m < 0) *info = -3; |
106 |
else if (*n < 0) *info = -4; |
107 |
else if (*k < 0 || *k > nq) *info = -5; |
108 |
else if (*lda < (std::max)(1, nq)) *info = -7; |
109 |
else if (*ldc < (std::max)(1, *m)) *info = -10; |
110 |
else if (*lwork < (std::max)(1, nw) && !query_size) *info = -12; |
111 |
|
112 |
if(*info != 0) |
113 |
{ |
114 |
int e = -*info; |
115 |
return xerbla_(method, &e, 6); |
116 |
} |
117 |
if(query_size) return 0; |
118 |
if ( *m == 0 || *n == 0 || *k == 0) |
119 |
{ |
120 |
work[0] = 1; |
121 |
return 0; |
122 |
} |
123 |
|
124 |
//Map input arrays to Eigen matrices |
125 |
//NOTE Here, k should be the the number of nonzero pivots as returned by xgeqpf |
126 |
int row = (*side == 'L') ? *m : *n; |
127 |
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > qr(a, row, *k, OuterStride<>(*lda)); |
128 |
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > dst(c, *m, *n, OuterStride<>(*ldc)); |
129 |
Map<Matrix<T,Dynamic,1> > hcoeffs(tau, *k); |
130 |
|
131 |
Matrix<T,Dynamic,Dynamic,ColMajor> matrixQ(*m, *n); |
132 |
matrixQ.setIdentity(); |
133 |
matrixQ = householderSequence(qr, hcoeffs); |
134 |
|
135 |
// Apply the Householder reflectors |
136 |
if (*side == 'L') |
137 |
{ |
138 |
if(*trans == 'N') dst = matrixQ * dst; |
139 |
//dst.applyOnTheLeft(householderSequence(qr, hcoeffs)); |
140 |
else if(*trans =='T') dst = matrixQ.transpose() * dst; |
141 |
//dst.applyOnTheLeft(householderSequence(qr, hcoeffs).transpose()); |
142 |
else dst = matrixQ.adjoint() * dst; |
143 |
//dst.applyOnTheLeft(householderSequence(qr, hcoeffs.conjugate())/*.adjoint()*/); |
144 |
} |
145 |
else |
146 |
{ |
147 |
if(*trans == 'N') dst = dst * matrixQ; |
148 |
//dst.applyOnTheRight(householderSequence(qr, hcoeffs)); |
149 |
else if(*trans =='T') dst = dst * matrixQ.transpose(); |
150 |
//dst.applyOnTheRight(householderSequence(qr, hcoeffs).transpose()); |
151 |
else dst = dst * matrixQ.adjoint(); |
152 |
//dst.applyOnTheRight(householderSequence(qr, hcoeffs.conjugate())/*.adjoint()*/); |
153 |
} |
154 |
return 0; |
155 |
} |
156 |
|
157 |
/* Apply the product of k elementary reflectors to a real matrix |
158 |
*/ |
159 |
EIGEN_LAPACK_FUNC(ormqr, (char *side, char *trans, int *m, int *n, int *k, RealScalar *a, |
160 |
int *lda, RealScalar *tau, RealScalar *c, int *ldc, RealScalar *work, |
161 |
int *lwork, int *info)) |
162 |
{ |
163 |
int err = apply_reflectors(SCALAR_SUFFIX_UP"ORMQR", side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info); |
164 |
return err; |
165 |
} |
166 |
|
167 |
/* Apply the product of k elementary reflectors to a complex matrix */ |
168 |
EIGEN_LAPACK_FUNC(unmqr, (char *side, char *trans, int *m, int *n, int *k, Complex *a, |
169 |
int *lda, Complex *tau, Complex *c, int *ldc, Complex *work, |
170 |
int *lwork, int *info)) |
171 |
{ |
172 |
int err = apply_reflectors(SCALAR_SUFFIX_UP"UNMQR", side, trans, m, n, k, a, lda, tau, c, ldc, |
173 |
work, lwork, info); |
174 |
return err; |
175 |
} |
176 |
|
177 |
template<typename T> |
178 |
int generate_Q(const char *method, int *m, int *n, int *k, T *a, int *lda, T *tau, |
179 |
T *work, int *lwork, int *info) |
180 |
{ |
181 |
bool query_size = (*lwork == -1); |
182 |
*info = 0; |
183 |
if (*m < 0) *info = -1; |
184 |
else if (*n < 0 || *n > *m) *info = -2; |
185 |
else if (*k < 0 || *k > *n) *info = -3; |
186 |
else if (*lda < (std::max)(1, *m)) *info = -5; |
187 |
else if (*lwork < (std::max)(1, *n) && !query_size) *info = -8; |
188 |
if (*info != 0) |
189 |
{ |
190 |
int e = -*info; |
191 |
return xerbla_(method, &e, 6); |
192 |
} |
193 |
if (query_size) |
194 |
{ |
195 |
work[0] = 0; |
196 |
return 0; |
197 |
} |
198 |
if (*n <= 0) |
199 |
{ |
200 |
work[0] = 1; |
201 |
return 0; |
202 |
} |
203 |
|
204 |
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > qr(a, *m, *n, OuterStride<>(*lda)); |
205 |
Matrix<T,Dynamic, Dynamic> tA(*m, *k); |
206 |
tA = matrix(a, *m, *k, *lda); |
207 |
Map<Matrix<T,Dynamic,1> > hcoeffs(tau, *k); |
208 |
qr.setIdentity(); |
209 |
qr = householderSequence(tA, hcoeffs) * qr; |
210 |
|
211 |
return 0; |
212 |
} |
213 |
/* Generates a m-by-n real matrix Q from the k elementary reflectors */ |
214 |
EIGEN_LAPACK_FUNC(orgqr, (int *m, int *n, int *k, RealScalar *a, int *lda, RealScalar *tau, |
215 |
RealScalar *work, int *lwork, int *info)) |
216 |
{ |
217 |
int err = generate_Q(SCALAR_SUFFIX_UP"ORGQR", m, n, k, a, lda, tau, work, lwork, info); |
218 |
return err; |
219 |
} |
220 |
|
221 |
/* Generates a m-by-n complex matrix Q from the k elementary reflectors */ |
222 |
EIGEN_LAPACK_FUNC(ungqr, (int *m, int *n, int *k, Complex *a, int *lda, Complex *tau, |
223 |
Complex *work, int *lwork, int *info)) |
224 |
{ |
225 |
int err = generate_Q(SCALAR_SUFFIX_UP"UNGQR", m, n, k, a, lda, tau, work, lwork, info); |
226 |
return err; |
227 |
} |