template<typename FunctorType_>
class Eigen::LevenbergMarquardt< FunctorType_ >
Performs non linear optimization over a non-linear function, using a variant of the Levenberg Marquardt algorithm.
Check wikipedia for more information. http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
Inherits internal::no_assignment_operator.
◆ diag()
template<typename FunctorType_ >
- Returns
- a reference to the diagonal of the jacobian
◆ epsilon()
template<typename FunctorType_ >
- Returns
- the error precision
◆ factor()
template<typename FunctorType_ >
- Returns
- the step bound for the diagonal shift
◆ fnorm()
template<typename FunctorType_ >
- Returns
- the norm of current vector function
◆ ftol()
template<typename FunctorType_ >
- Returns
- the tolerance for the norm of the vector function
◆ fvec()
template<typename FunctorType_ >
- Returns
- a reference to the current vector function
◆ gnorm()
template<typename FunctorType_ >
- Returns
- the norm of the gradient of the error
◆ gtol()
template<typename FunctorType_ >
- Returns
- the tolerance for the norm of the gradient of the error vector
◆ info()
template<typename FunctorType_ >
Reports whether the minimization was successful.
- Returns
Success
if the minimization was successful, NumericalIssue
if a numerical problem arises during the minimization process, for example during the QR factorization NoConvergence
if the minimization did not converge after the maximum number of function evaluation allowed InvalidInput
if the input matrix is invalid
◆ iterations()
template<typename FunctorType_ >
- Returns
- the number of iterations performed
◆ jacobian()
template<typename FunctorType_ >
- Returns
- a reference to the matrix where the current Jacobian matrix is stored
◆ lm_param()
template<typename FunctorType_ >
◆ matrixR()
template<typename FunctorType_ >
- Returns
- a reference to the triangular matrix R from the QR of the jacobian matrix.
- See also
- jacobian()
◆ maxfev()
template<typename FunctorType_ >
- Returns
- the maximum number of function evaluation
◆ nfev()
template<typename FunctorType_ >
- Returns
- the number of functions evaluation
◆ njev()
template<typename FunctorType_ >
- Returns
- the number of jacobian evaluation
◆ permutation()
template<typename FunctorType_ >
the permutation used in the QR factorization
◆ resetParameters()
template<typename FunctorType_ >
Sets the default parameters
◆ setEpsilon()
template<typename FunctorType_ >
◆ setExternalScaling()
template<typename FunctorType_ >
Use an external Scaling. If set to true, pass a nonzero diagonal to diag()
◆ setFactor()
template<typename FunctorType_ >
Sets the step bound for the diagonal shift
◆ setFtol()
template<typename FunctorType_ >
Sets the tolerance for the norm of the vector function
◆ setGtol()
template<typename FunctorType_ >
Sets the tolerance for the norm of the gradient of the error vector
◆ setMaxfev()
template<typename FunctorType_ >
Sets the maximum number of function evaluation
◆ setXtol()
template<typename FunctorType_ >
Sets the tolerance for the norm of the solution vector
◆ xtol()
template<typename FunctorType_ >
- Returns
- the tolerance for the norm of the solution vector
The documentation for this class was generated from the following files: