![]() |
Eigen
3.4.90 (git rev 67eeba6e720c5745abc77ae6c92ce0a44aa7b7ae)
|
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
MatrixType | the type of the dense matrix storing the coefficients |
Mode | can be either Lower or Upper |
This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.
Public Member Functions | |
template<typename OtherDerived > | |
Product< SparseSelfAdjointView, OtherDerived > | operator* (const MatrixBase< OtherDerived > &rhs) const |
template<typename OtherDerived > | |
Product< SparseSelfAdjointView, OtherDerived > | operator* (const SparseMatrixBase< OtherDerived > &rhs) const |
template<typename DerivedU > | |
SparseSelfAdjointView & | rankUpdate (const SparseMatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1)) |
SparseSymmetricPermutationProduct< MatrixTypeNested_, Mode > | twistedBy (const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const |
![]() | |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
SparseSelfAdjointView< MatrixType, Mode_ > & | derived () |
const SparseSelfAdjointView< MatrixType, Mode_ > & | derived () const |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
Additional Inherited Members | |
![]() | |
typedef Eigen::Index | Index |
The interface type of indices. More... | |
|
inline |
Efficient sparse self-adjoint matrix times dense vector/matrix product
|
inline |
*this
and a sparse matrix rhs.Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
SparseSelfAdjointView& Eigen::SparseSelfAdjointView< MatrixType, Mode_ >::rankUpdate | ( | const SparseMatrixBase< DerivedU > & | u, |
const Scalar & | alpha = Scalar(1) |
||
) |
Perform a symmetric rank K update of the selfadjoint matrix *this
: \( this = this + \alpha ( u u^* ) \) where u is a vector or matrix.
*this
To perform \( this = this + \alpha ( u^* u ) \) you can simply call this function with u.adjoint().
|
inline |