Eigen  3.4.90 (git rev 67eeba6e720c5745abc77ae6c92ce0a44aa7b7ae)
Eigen::PastixLLT< MatrixType_, UpLo_ > Class Template Reference

## Detailed Description

### template<typename MatrixType_, int UpLo_> class Eigen::PastixLLT< MatrixType_, UpLo_ >

A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library.

This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization available in the PaStiX library. The matrix A should be symmetric and positive definite WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX The vectors or matrices X and B can be either dense or sparse

Template Parameters
 MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX

This class follows the sparse solver concept .

Sparse solver concept, class SimplicialLLT

Inherits Eigen::PastixBase< Derived >.

## Public Member Functions

void analyzePattern (const MatrixType &matrix)

void compute (const MatrixType &matrix)

void factorize (const MatrixType &matrix)

## ◆ analyzePattern()

template<typename MatrixType_ , int UpLo_>
 void Eigen::PastixLLT< MatrixType_, UpLo_ >::analyzePattern ( const MatrixType & matrix )
inline

Compute the LL^T symbolic factorization of matrix using its sparsity pattern The result of this operation can be used with successive matrices having the same pattern as matrix

factorize()

## ◆ compute()

template<typename MatrixType_ , int UpLo_>
 void Eigen::PastixLLT< MatrixType_, UpLo_ >::compute ( const MatrixType & matrix )
inline

Compute the L factor of the LL^T supernodal factorization of matrix

analyzePattern() factorize()

## ◆ factorize()

template<typename MatrixType_ , int UpLo_>
 void Eigen::PastixLLT< MatrixType_, UpLo_ >::factorize ( const MatrixType & matrix )
inline

Compute the LL^T supernodal numerical factorization of matrix