Eigen  3.3.7
Memory.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9 // Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 
16 /*****************************************************************************
17 *** Platform checks for aligned malloc functions ***
18 *****************************************************************************/
19 
20 #ifndef EIGEN_MEMORY_H
21 #define EIGEN_MEMORY_H
22 
23 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
24 
25 // Try to determine automatically if malloc is already aligned.
26 
27 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
28 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
29 // This is true at least since glibc 2.8.
30 // This leaves the question how to detect 64-bit. According to this document,
31 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
32 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
33 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
34 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
35  && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
36  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
37 #else
38  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
39 #endif
40 
41 // FreeBSD 6 seems to have 16-byte aligned malloc
42 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
43 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
44 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
45 #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
46  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
47 #else
48  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
49 #endif
50 
51 #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
52  || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
53  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
54  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
55  #define EIGEN_MALLOC_ALREADY_ALIGNED 1
56 #else
57  #define EIGEN_MALLOC_ALREADY_ALIGNED 0
58 #endif
59 
60 #endif
61 
62 namespace Eigen {
63 
64 namespace internal {
65 
66 EIGEN_DEVICE_FUNC
67 inline void throw_std_bad_alloc()
68 {
69  #ifdef EIGEN_EXCEPTIONS
70  throw std::bad_alloc();
71  #else
72  std::size_t huge = static_cast<std::size_t>(-1);
73  ::operator new(huge);
74  #endif
75 }
76 
77 /*****************************************************************************
78 *** Implementation of handmade aligned functions ***
79 *****************************************************************************/
80 
81 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
82 
86 inline void* handmade_aligned_malloc(std::size_t size)
87 {
88  void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES);
89  if (original == 0) return 0;
90  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
91  *(reinterpret_cast<void**>(aligned) - 1) = original;
92  return aligned;
93 }
94 
96 inline void handmade_aligned_free(void *ptr)
97 {
98  if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
99 }
100 
106 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
107 {
108  if (ptr == 0) return handmade_aligned_malloc(size);
109  void *original = *(reinterpret_cast<void**>(ptr) - 1);
110  std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
111  original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES);
112  if (original == 0) return 0;
113  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
114  void *previous_aligned = static_cast<char *>(original)+previous_offset;
115  if(aligned!=previous_aligned)
116  std::memmove(aligned, previous_aligned, size);
117 
118  *(reinterpret_cast<void**>(aligned) - 1) = original;
119  return aligned;
120 }
121 
122 /*****************************************************************************
123 *** Implementation of portable aligned versions of malloc/free/realloc ***
124 *****************************************************************************/
125 
126 #ifdef EIGEN_NO_MALLOC
127 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
128 {
129  eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
130 }
131 #elif defined EIGEN_RUNTIME_NO_MALLOC
132 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
133 {
134  static bool value = true;
135  if (update == 1)
136  value = new_value;
137  return value;
138 }
139 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
140 EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
141 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
142 {
143  eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
144 }
145 #else
146 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
147 {}
148 #endif
149 
153 EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size)
154 {
155  check_that_malloc_is_allowed();
156 
157  void *result;
158  #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
159  result = std::malloc(size);
160  #if EIGEN_DEFAULT_ALIGN_BYTES==16
161  eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator.");
162  #endif
163  #else
164  result = handmade_aligned_malloc(size);
165  #endif
166 
167  if(!result && size)
168  throw_std_bad_alloc();
169 
170  return result;
171 }
172 
174 EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr)
175 {
176  #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
177  std::free(ptr);
178  #else
179  handmade_aligned_free(ptr);
180  #endif
181 }
182 
188 inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
189 {
190  EIGEN_UNUSED_VARIABLE(old_size);
191 
192  void *result;
193 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
194  result = std::realloc(ptr,new_size);
195 #else
196  result = handmade_aligned_realloc(ptr,new_size,old_size);
197 #endif
198 
199  if (!result && new_size)
200  throw_std_bad_alloc();
201 
202  return result;
203 }
204 
205 /*****************************************************************************
206 *** Implementation of conditionally aligned functions ***
207 *****************************************************************************/
208 
212 template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size)
213 {
214  return aligned_malloc(size);
215 }
216 
217 template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size)
218 {
219  check_that_malloc_is_allowed();
220 
221  void *result = std::malloc(size);
222  if(!result && size)
223  throw_std_bad_alloc();
224  return result;
225 }
226 
228 template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr)
229 {
230  aligned_free(ptr);
231 }
232 
233 template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr)
234 {
235  std::free(ptr);
236 }
237 
238 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size)
239 {
240  return aligned_realloc(ptr, new_size, old_size);
241 }
242 
243 template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t)
244 {
245  return std::realloc(ptr, new_size);
246 }
247 
248 /*****************************************************************************
249 *** Construction/destruction of array elements ***
250 *****************************************************************************/
251 
255 template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size)
256 {
257  // always destruct an array starting from the end.
258  if(ptr)
259  while(size) ptr[--size].~T();
260 }
261 
265 template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size)
266 {
267  std::size_t i;
268  EIGEN_TRY
269  {
270  for (i = 0; i < size; ++i) ::new (ptr + i) T;
271  return ptr;
272  }
273  EIGEN_CATCH(...)
274  {
275  destruct_elements_of_array(ptr, i);
276  EIGEN_THROW;
277  }
278  return NULL;
279 }
280 
281 /*****************************************************************************
282 *** Implementation of aligned new/delete-like functions ***
283 *****************************************************************************/
284 
285 template<typename T>
286 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
287 {
288  if(size > std::size_t(-1) / sizeof(T))
289  throw_std_bad_alloc();
290 }
291 
296 template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size)
297 {
298  check_size_for_overflow<T>(size);
299  T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
300  EIGEN_TRY
301  {
302  return construct_elements_of_array(result, size);
303  }
304  EIGEN_CATCH(...)
305  {
306  aligned_free(result);
307  EIGEN_THROW;
308  }
309  return result;
310 }
311 
312 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size)
313 {
314  check_size_for_overflow<T>(size);
315  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
316  EIGEN_TRY
317  {
318  return construct_elements_of_array(result, size);
319  }
320  EIGEN_CATCH(...)
321  {
322  conditional_aligned_free<Align>(result);
323  EIGEN_THROW;
324  }
325  return result;
326 }
327 
331 template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size)
332 {
333  destruct_elements_of_array<T>(ptr, size);
334  aligned_free(ptr);
335 }
336 
340 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size)
341 {
342  destruct_elements_of_array<T>(ptr, size);
343  conditional_aligned_free<Align>(ptr);
344 }
345 
346 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size)
347 {
348  check_size_for_overflow<T>(new_size);
349  check_size_for_overflow<T>(old_size);
350  if(new_size < old_size)
351  destruct_elements_of_array(pts+new_size, old_size-new_size);
352  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
353  if(new_size > old_size)
354  {
355  EIGEN_TRY
356  {
357  construct_elements_of_array(result+old_size, new_size-old_size);
358  }
359  EIGEN_CATCH(...)
360  {
361  conditional_aligned_free<Align>(result);
362  EIGEN_THROW;
363  }
364  }
365  return result;
366 }
367 
368 
369 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size)
370 {
371  if(size==0)
372  return 0; // short-cut. Also fixes Bug 884
373  check_size_for_overflow<T>(size);
374  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
375  if(NumTraits<T>::RequireInitialization)
376  {
377  EIGEN_TRY
378  {
379  construct_elements_of_array(result, size);
380  }
381  EIGEN_CATCH(...)
382  {
383  conditional_aligned_free<Align>(result);
384  EIGEN_THROW;
385  }
386  }
387  return result;
388 }
389 
390 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size)
391 {
392  check_size_for_overflow<T>(new_size);
393  check_size_for_overflow<T>(old_size);
394  if(NumTraits<T>::RequireInitialization && (new_size < old_size))
395  destruct_elements_of_array(pts+new_size, old_size-new_size);
396  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
397  if(NumTraits<T>::RequireInitialization && (new_size > old_size))
398  {
399  EIGEN_TRY
400  {
401  construct_elements_of_array(result+old_size, new_size-old_size);
402  }
403  EIGEN_CATCH(...)
404  {
405  conditional_aligned_free<Align>(result);
406  EIGEN_THROW;
407  }
408  }
409  return result;
410 }
411 
412 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size)
413 {
414  if(NumTraits<T>::RequireInitialization)
415  destruct_elements_of_array<T>(ptr, size);
416  conditional_aligned_free<Align>(ptr);
417 }
418 
419 /****************************************************************************/
420 
438 template<int Alignment, typename Scalar, typename Index>
439 EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size)
440 {
441  const Index ScalarSize = sizeof(Scalar);
442  const Index AlignmentSize = Alignment / ScalarSize;
443  const Index AlignmentMask = AlignmentSize-1;
444 
445  if(AlignmentSize<=1)
446  {
447  // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
448  // so that all elements of the array have the same alignment.
449  return 0;
450  }
451  else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0)
452  {
453  // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size.
454  // Consequently, no element of the array is well aligned.
455  return size;
456  }
457  else
458  {
459  Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
460  return (first < size) ? first : size;
461  }
462 }
463 
466 template<typename Scalar, typename Index>
467 EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size)
468 {
469  typedef typename packet_traits<Scalar>::type DefaultPacketType;
470  return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
471 }
472 
475 template<typename Index>
476 inline Index first_multiple(Index size, Index base)
477 {
478  return ((size+base-1)/base)*base;
479 }
480 
481 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
482 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
483 template<typename T, bool UseMemcpy> struct smart_copy_helper;
484 
485 template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target)
486 {
487  smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
488 }
489 
490 template<typename T> struct smart_copy_helper<T,true> {
491  EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
492  {
493  IntPtr size = IntPtr(end)-IntPtr(start);
494  if(size==0) return;
495  eigen_internal_assert(start!=0 && end!=0 && target!=0);
496  std::memcpy(target, start, size);
497  }
498 };
499 
500 template<typename T> struct smart_copy_helper<T,false> {
501  EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
502  { std::copy(start, end, target); }
503 };
504 
505 // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
506 template<typename T, bool UseMemmove> struct smart_memmove_helper;
507 
508 template<typename T> void smart_memmove(const T* start, const T* end, T* target)
509 {
510  smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
511 }
512 
513 template<typename T> struct smart_memmove_helper<T,true> {
514  static inline void run(const T* start, const T* end, T* target)
515  {
516  IntPtr size = IntPtr(end)-IntPtr(start);
517  if(size==0) return;
518  eigen_internal_assert(start!=0 && end!=0 && target!=0);
519  std::memmove(target, start, size);
520  }
521 };
522 
523 template<typename T> struct smart_memmove_helper<T,false> {
524  static inline void run(const T* start, const T* end, T* target)
525  {
526  if (UIntPtr(target) < UIntPtr(start))
527  {
528  std::copy(start, end, target);
529  }
530  else
531  {
532  std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
533  std::copy_backward(start, end, target + count);
534  }
535  }
536 };
537 
538 
539 /*****************************************************************************
540 *** Implementation of runtime stack allocation (falling back to malloc) ***
541 *****************************************************************************/
542 
543 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
544 // to the appropriate stack allocation function
545 #ifndef EIGEN_ALLOCA
546  #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
547  #define EIGEN_ALLOCA alloca
548  #elif EIGEN_COMP_MSVC
549  #define EIGEN_ALLOCA _alloca
550  #endif
551 #endif
552 
553 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
554 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
555 template<typename T> class aligned_stack_memory_handler : noncopyable
556 {
557  public:
558  /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
559  * Note that \a ptr can be 0 regardless of the other parameters.
560  * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
561  * In this case, the buffer elements will also be destructed when this handler will be destructed.
562  * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
563  **/
564  aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
565  : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
566  {
567  if(NumTraits<T>::RequireInitialization && m_ptr)
568  Eigen::internal::construct_elements_of_array(m_ptr, size);
569  }
570  ~aligned_stack_memory_handler()
571  {
572  if(NumTraits<T>::RequireInitialization && m_ptr)
573  Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
574  if(m_deallocate)
575  Eigen::internal::aligned_free(m_ptr);
576  }
577  protected:
578  T* m_ptr;
579  std::size_t m_size;
580  bool m_deallocate;
581 };
582 
583 template<typename T> class scoped_array : noncopyable
584 {
585  T* m_ptr;
586 public:
587  explicit scoped_array(std::ptrdiff_t size)
588  {
589  m_ptr = new T[size];
590  }
591  ~scoped_array()
592  {
593  delete[] m_ptr;
594  }
595  T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
596  const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
597  T* &ptr() { return m_ptr; }
598  const T* ptr() const { return m_ptr; }
599  operator const T*() const { return m_ptr; }
600 };
601 
602 template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
603 {
604  std::swap(a.ptr(),b.ptr());
605 }
606 
607 } // end namespace internal
608 
624 #ifdef EIGEN_ALLOCA
625 
626  #if EIGEN_DEFAULT_ALIGN_BYTES>0
627  // We always manually re-align the result of EIGEN_ALLOCA.
628  // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
629  #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)))
630  #else
631  #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
632  #endif
633 
634  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
635  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
636  TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
637  : reinterpret_cast<TYPE*>( \
638  (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
639  : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
640  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
641 
642 #else
643 
644  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
645  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
646  TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
647  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
648 
649 #endif
650 
651 
652 /*****************************************************************************
653 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
654 *****************************************************************************/
655 
656 #if EIGEN_MAX_ALIGN_BYTES!=0
657  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
658  void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
659  EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
660  EIGEN_CATCH (...) { return 0; } \
661  }
662  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
663  void *operator new(std::size_t size) { \
664  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
665  } \
666  void *operator new[](std::size_t size) { \
667  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
668  } \
669  void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
670  void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
671  void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
672  void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
673  /* in-place new and delete. since (at least afaik) there is no actual */ \
674  /* memory allocated we can safely let the default implementation handle */ \
675  /* this particular case. */ \
676  static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \
677  static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \
678  void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \
679  void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \
680  /* nothrow-new (returns zero instead of std::bad_alloc) */ \
681  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
682  void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
683  Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
684  } \
685  typedef void eigen_aligned_operator_new_marker_type;
686 #else
687  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
688 #endif
689 
690 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
691 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
692  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0)))
693 
694 /****************************************************************************/
695 
720 template<class T>
721 class aligned_allocator : public std::allocator<T>
722 {
723 public:
724  typedef std::size_t size_type;
725  typedef std::ptrdiff_t difference_type;
726  typedef T* pointer;
727  typedef const T* const_pointer;
728  typedef T& reference;
729  typedef const T& const_reference;
730  typedef T value_type;
731 
732  template<class U>
733  struct rebind
734  {
735  typedef aligned_allocator<U> other;
736  };
737 
738  aligned_allocator() : std::allocator<T>() {}
739 
740  aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
741 
742  template<class U>
743  aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
744 
745  ~aligned_allocator() {}
746 
747  pointer allocate(size_type num, const void* /*hint*/ = 0)
748  {
749  internal::check_size_for_overflow<T>(num);
750  size_type size = num * sizeof(T);
751 #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0)
752  // workaround gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544
753  // It triggered eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807
754  if(size>=std::size_t((std::numeric_limits<std::ptrdiff_t>::max)()))
755  return 0;
756  else
757 #endif
758  return static_cast<pointer>( internal::aligned_malloc(size) );
759  }
760 
761  void deallocate(pointer p, size_type /*num*/)
762  {
763  internal::aligned_free(p);
764  }
765 };
766 
767 //---------- Cache sizes ----------
768 
769 #if !defined(EIGEN_NO_CPUID)
770 # if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
771 # if defined(__PIC__) && EIGEN_ARCH_i386
772  // Case for x86 with PIC
773 # define EIGEN_CPUID(abcd,func,id) \
774  __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
775 # elif defined(__PIC__) && EIGEN_ARCH_x86_64
776  // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
777  // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
778 # define EIGEN_CPUID(abcd,func,id) \
779  __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
780 # else
781  // Case for x86_64 or x86 w/o PIC
782 # define EIGEN_CPUID(abcd,func,id) \
783  __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
784 # endif
785 # elif EIGEN_COMP_MSVC
786 # if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
787 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
788 # endif
789 # endif
790 #endif
791 
792 namespace internal {
793 
794 #ifdef EIGEN_CPUID
795 
796 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
797 {
798  return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
799 }
800 
801 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
802 {
803  int abcd[4];
804  l1 = l2 = l3 = 0;
805  int cache_id = 0;
806  int cache_type = 0;
807  do {
808  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
809  EIGEN_CPUID(abcd,0x4,cache_id);
810  cache_type = (abcd[0] & 0x0F) >> 0;
811  if(cache_type==1||cache_type==3) // data or unified cache
812  {
813  int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
814  int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
815  int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
816  int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
817  int sets = (abcd[2]); // C[31:0]
818 
819  int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
820 
821  switch(cache_level)
822  {
823  case 1: l1 = cache_size; break;
824  case 2: l2 = cache_size; break;
825  case 3: l3 = cache_size; break;
826  default: break;
827  }
828  }
829  cache_id++;
830  } while(cache_type>0 && cache_id<16);
831 }
832 
833 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
834 {
835  int abcd[4];
836  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
837  l1 = l2 = l3 = 0;
838  EIGEN_CPUID(abcd,0x00000002,0);
839  unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
840  bool check_for_p2_core2 = false;
841  for(int i=0; i<14; ++i)
842  {
843  switch(bytes[i])
844  {
845  case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
846  case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
847  case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
848  case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
849  case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
850  case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
851  case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
852  case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
853  case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
854  case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
855  case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
856  case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
857  case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
858  case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
859  case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
860  case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
861  case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
862  case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
863  case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
864  case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
865  case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
866  case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
867  case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
868  case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
869  case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
870  case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
871  case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
872  case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
873  case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
874  case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
875  case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
876  case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
877  case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
878  case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
879  case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
880  case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
881  case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
882  case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
883  case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
884  case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
885  case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
886  case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
887  case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
888  case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
889  case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
890  case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
891  case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
892  case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
893  case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
894  case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
895  case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
896  case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
897  case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
898  case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
899  case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
900  case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
901  case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
902 
903  default: break;
904  }
905  }
906  if(check_for_p2_core2 && l2 == l3)
907  l3 = 0;
908  l1 *= 1024;
909  l2 *= 1024;
910  l3 *= 1024;
911 }
912 
913 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
914 {
915  if(max_std_funcs>=4)
916  queryCacheSizes_intel_direct(l1,l2,l3);
917  else
918  queryCacheSizes_intel_codes(l1,l2,l3);
919 }
920 
921 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
922 {
923  int abcd[4];
924  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
925  EIGEN_CPUID(abcd,0x80000005,0);
926  l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
927  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
928  EIGEN_CPUID(abcd,0x80000006,0);
929  l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
930  l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
931 }
932 #endif
933 
936 inline void queryCacheSizes(int& l1, int& l2, int& l3)
937 {
938  #ifdef EIGEN_CPUID
939  int abcd[4];
940  const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
941  const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
942  const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
943 
944  // identify the CPU vendor
945  EIGEN_CPUID(abcd,0x0,0);
946  int max_std_funcs = abcd[1];
947  if(cpuid_is_vendor(abcd,GenuineIntel))
948  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
949  else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
950  queryCacheSizes_amd(l1,l2,l3);
951  else
952  // by default let's use Intel's API
953  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
954 
955  // here is the list of other vendors:
956 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
957 // ||cpuid_is_vendor(abcd,"CyrixInstead")
958 // ||cpuid_is_vendor(abcd,"CentaurHauls")
959 // ||cpuid_is_vendor(abcd,"GenuineTMx86")
960 // ||cpuid_is_vendor(abcd,"TransmetaCPU")
961 // ||cpuid_is_vendor(abcd,"RiseRiseRise")
962 // ||cpuid_is_vendor(abcd,"Geode by NSC")
963 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
964 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
965 // ||cpuid_is_vendor(abcd,"NexGenDriven")
966  #else
967  l1 = l2 = l3 = -1;
968  #endif
969 }
970 
973 inline int queryL1CacheSize()
974 {
975  int l1(-1), l2, l3;
976  queryCacheSizes(l1,l2,l3);
977  return l1;
978 }
979 
982 inline int queryTopLevelCacheSize()
983 {
984  int l1, l2(-1), l3(-1);
985  queryCacheSizes(l1,l2,l3);
986  return (std::max)(l2,l3);
987 }
988 
989 } // end namespace internal
990 
991 } // end namespace Eigen
992 
993 #endif // EIGEN_MEMORY_H
Namespace containing all symbols from the Eigen library.
Definition: Core:306
STL compatible allocator to use with types requiring a non standrad alignment.
Definition: Memory.h:721
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Definition: Eigen_Colamd.h:50