Please, help us to better know about our user community by answering the following short survey: https://forms.gle/wpyrxWi18ox9Z5ae9
Eigen  3.3.90 (git rev e4b24e7fb24c280e1db096edd983ee29e255e3b8)
ForwardDeclarations.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_FORWARDDECLARATIONS_H
12 #define EIGEN_FORWARDDECLARATIONS_H
13 
14 namespace Eigen {
15 namespace internal {
16 
17 template<typename T> struct traits;
18 
19 // here we say once and for all that traits<const T> == traits<T>
20 // When constness must affect traits, it has to be constness on template parameters on which T itself depends.
21 // For example, traits<Map<const T> > != traits<Map<T> >, but
22 // traits<const Map<T> > == traits<Map<T> >
23 template<typename T> struct traits<const T> : traits<T> {};
24 
25 template<typename Derived> struct has_direct_access
26 {
27  enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 };
28 };
29 
30 template<typename Derived> struct accessors_level
31 {
32  enum { has_direct_access = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0,
33  has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0,
34  value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors)
35  : (has_write_access ? WriteAccessors : ReadOnlyAccessors)
36  };
37 };
38 
39 template<typename T> struct evaluator_traits;
40 
41 template< typename T> struct evaluator;
42 
43 } // end namespace internal
44 
45 template<typename T> struct NumTraits;
46 
47 template<typename Derived> struct EigenBase;
48 template<typename Derived> class DenseBase;
49 template<typename Derived> class PlainObjectBase;
50 template<typename Derived, int Level> class DenseCoeffsBase;
51 
52 template<typename _Scalar, int _Rows, int _Cols,
53  int _Options = AutoAlign |
54 #if EIGEN_GNUC_AT(3,4)
55  // workaround a bug in at least gcc 3.4.6
56  // the innermost ?: ternary operator is misparsed. We write it slightly
57  // differently and this makes gcc 3.4.6 happy, but it's ugly.
58  // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
59  // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
60  ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
61  : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
62  : Eigen::ColMajor ),
63 #else
64  ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
65  : (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
66  : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
67 #endif
68  int _MaxRows = _Rows,
69  int _MaxCols = _Cols
70 > class Matrix;
71 
72 template<typename Derived> class MatrixBase;
73 template<typename Derived> class ArrayBase;
74 
75 template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged;
76 template<typename ExpressionType, template <typename> class StorageBase > class NoAlias;
77 template<typename ExpressionType> class NestByValue;
78 template<typename ExpressionType> class ForceAlignedAccess;
79 template<typename ExpressionType> class SwapWrapper;
80 
81 template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false> class Block;
82 template<typename XprType, typename RowIndices, typename ColIndices> class IndexedView;
83 template<typename XprType, int Rows=Dynamic, int Cols=Dynamic, int Order=0> class Reshaped;
84 
85 template<typename MatrixType, int Size=Dynamic> class VectorBlock;
86 template<typename MatrixType> class Transpose;
87 template<typename MatrixType> class Conjugate;
88 template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
89 template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
90 template<typename ViewOp, typename MatrixType> class CwiseUnaryView;
91 template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
92 template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3> class CwiseTernaryOp;
93 template<typename Decomposition, typename Rhstype> class Solve;
94 template<typename XprType> class Inverse;
95 
96 template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product;
97 
98 template<typename Derived> class DiagonalBase;
99 template<typename _DiagonalVectorType> class DiagonalWrapper;
100 template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
101 template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
102 template<typename MatrixType, int Index = 0> class Diagonal;
103 template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
104 template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
105 template<typename Derived> class PermutationBase;
106 template<typename Derived> class TranspositionsBase;
107 template<typename _IndicesType> class PermutationWrapper;
108 template<typename _IndicesType> class TranspositionsWrapper;
109 
110 template<typename Derived,
111  int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
112 > class MapBase;
113 template<int OuterStrideAtCompileTime, int InnerStrideAtCompileTime> class Stride;
114 template<int Value = Dynamic> class InnerStride;
115 template<int Value = Dynamic> class OuterStride;
116 template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
117 template<typename Derived> class RefBase;
118 template<typename PlainObjectType, int Options = 0,
119  typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
120 
121 template<typename Derived> class TriangularBase;
122 template<typename MatrixType, unsigned int Mode> class TriangularView;
123 template<typename MatrixType, unsigned int Mode> class SelfAdjointView;
124 template<typename MatrixType> class SparseView;
125 template<typename ExpressionType> class WithFormat;
126 template<typename MatrixType> struct CommaInitializer;
127 template<typename Derived> class ReturnByValue;
128 template<typename ExpressionType> class ArrayWrapper;
129 template<typename ExpressionType> class MatrixWrapper;
130 template<typename Derived> class SolverBase;
131 template<typename XprType> class InnerIterator;
132 
133 namespace internal {
134 template<typename XprType> class generic_randaccess_stl_iterator;
135 template<typename XprType> class pointer_based_stl_iterator;
136 template<typename XprType, DirectionType Direction> class subvector_stl_iterator;
137 template<typename XprType, DirectionType Direction> class subvector_stl_reverse_iterator;
138 template<typename DecompositionType> struct kernel_retval_base;
139 template<typename DecompositionType> struct kernel_retval;
140 template<typename DecompositionType> struct image_retval_base;
141 template<typename DecompositionType> struct image_retval;
142 } // end namespace internal
143 
144 namespace internal {
145 template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
146 }
147 
148 namespace internal {
149 template<typename Lhs, typename Rhs> struct product_type;
150 
151 template<bool> struct EnableIf;
152 
158 template< typename T,
159  int ProductTag = internal::product_type<typename T::Lhs,typename T::Rhs>::ret,
160  typename LhsShape = typename evaluator_traits<typename T::Lhs>::Shape,
161  typename RhsShape = typename evaluator_traits<typename T::Rhs>::Shape,
162  typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
163  typename RhsScalar = typename traits<typename T::Rhs>::Scalar
164  > struct product_evaluator;
165 }
166 
167 template<typename Lhs, typename Rhs,
168  int ProductType = internal::product_type<Lhs,Rhs>::value>
169 struct ProductReturnType;
170 
171 // this is a workaround for sun CC
172 template<typename Lhs, typename Rhs> struct LazyProductReturnType;
173 
174 namespace internal {
175 
176 // Provides scalar/packet-wise product and product with accumulation
177 // with optional conjugation of the arguments.
178 template<typename LhsScalar, typename RhsScalar, bool ConjLhs=false, bool ConjRhs=false> struct conj_helper;
179 
180 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_sum_op;
181 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_difference_op;
182 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_conj_product_op;
183 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_min_op;
184 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_max_op;
185 template<typename Scalar> struct scalar_opposite_op;
186 template<typename Scalar> struct scalar_conjugate_op;
187 template<typename Scalar> struct scalar_real_op;
188 template<typename Scalar> struct scalar_imag_op;
189 template<typename Scalar> struct scalar_abs_op;
190 template<typename Scalar> struct scalar_abs2_op;
191 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_absolute_difference_op;
192 template<typename Scalar> struct scalar_sqrt_op;
193 template<typename Scalar> struct scalar_rsqrt_op;
194 template<typename Scalar> struct scalar_exp_op;
195 template<typename Scalar> struct scalar_log_op;
196 template<typename Scalar> struct scalar_cos_op;
197 template<typename Scalar> struct scalar_sin_op;
198 template<typename Scalar> struct scalar_acos_op;
199 template<typename Scalar> struct scalar_asin_op;
200 template<typename Scalar> struct scalar_tan_op;
201 template<typename Scalar> struct scalar_inverse_op;
202 template<typename Scalar> struct scalar_square_op;
203 template<typename Scalar> struct scalar_cube_op;
204 template<typename Scalar, typename NewType> struct scalar_cast_op;
205 template<typename Scalar> struct scalar_random_op;
206 template<typename Scalar> struct scalar_constant_op;
207 template<typename Scalar> struct scalar_identity_op;
208 template<typename Scalar,bool is_complex, bool is_integer> struct scalar_sign_op;
209 template<typename Scalar,typename ScalarExponent> struct scalar_pow_op;
210 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_hypot_op;
211 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
212 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_quotient_op;
213 
214 // SpecialFunctions module
215 template<typename Scalar> struct scalar_lgamma_op;
216 template<typename Scalar> struct scalar_digamma_op;
217 template<typename Scalar> struct scalar_erf_op;
218 template<typename Scalar> struct scalar_erfc_op;
219 template<typename Scalar> struct scalar_ndtri_op;
220 template<typename Scalar> struct scalar_igamma_op;
221 template<typename Scalar> struct scalar_igammac_op;
222 template<typename Scalar> struct scalar_zeta_op;
223 template<typename Scalar> struct scalar_betainc_op;
224 
225 // Bessel functions in SpecialFunctions module
226 template<typename Scalar> struct scalar_bessel_i0_op;
227 template<typename Scalar> struct scalar_bessel_i0e_op;
228 template<typename Scalar> struct scalar_bessel_i1_op;
229 template<typename Scalar> struct scalar_bessel_i1e_op;
230 template<typename Scalar> struct scalar_bessel_j0_op;
231 template<typename Scalar> struct scalar_bessel_y0_op;
232 template<typename Scalar> struct scalar_bessel_j1_op;
233 template<typename Scalar> struct scalar_bessel_y1_op;
234 template<typename Scalar> struct scalar_bessel_k0_op;
235 template<typename Scalar> struct scalar_bessel_k0e_op;
236 template<typename Scalar> struct scalar_bessel_k1_op;
237 template<typename Scalar> struct scalar_bessel_k1e_op;
238 
239 
240 } // end namespace internal
241 
242 struct IOFormat;
243 
244 // Array module
245 template<typename _Scalar, int _Rows, int _Cols,
246  int _Options = AutoAlign |
247 #if EIGEN_GNUC_AT(3,4)
248  // workaround a bug in at least gcc 3.4.6
249  // the innermost ?: ternary operator is misparsed. We write it slightly
250  // differently and this makes gcc 3.4.6 happy, but it's ugly.
251  // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
252  // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
253  ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
254  : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
255  : Eigen::ColMajor ),
256 #else
257  ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
258  : (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
259  : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
260 #endif
261  int _MaxRows = _Rows, int _MaxCols = _Cols> class Array;
262 template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
263 template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
264 template<typename ExpressionType, int Direction> class VectorwiseOp;
265 template<typename MatrixType,int RowFactor,int ColFactor> class Replicate;
266 template<typename MatrixType, int Direction = BothDirections> class Reverse;
267 
268 template<typename MatrixType> class FullPivLU;
269 template<typename MatrixType> class PartialPivLU;
270 namespace internal {
271 template<typename MatrixType> struct inverse_impl;
272 }
273 template<typename MatrixType> class HouseholderQR;
274 template<typename MatrixType> class ColPivHouseholderQR;
275 template<typename MatrixType> class FullPivHouseholderQR;
276 template<typename MatrixType> class CompleteOrthogonalDecomposition;
277 template<typename MatrixType> class SVDBase;
278 template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
279 template<typename MatrixType> class BDCSVD;
280 template<typename MatrixType, int UpLo = Lower> class LLT;
281 template<typename MatrixType, int UpLo = Lower> class LDLT;
282 template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
283 template<typename Scalar> class JacobiRotation;
284 
285 // Geometry module:
286 template<typename Derived, int _Dim> class RotationBase;
287 template<typename Lhs, typename Rhs> class Cross;
288 template<typename Derived> class QuaternionBase;
289 template<typename Scalar> class Rotation2D;
290 template<typename Scalar> class AngleAxis;
291 template<typename Scalar,int Dim> class Translation;
292 template<typename Scalar,int Dim> class AlignedBox;
293 template<typename Scalar, int Options = AutoAlign> class Quaternion;
294 template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
295 template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
296 template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
297 template<typename Scalar> class UniformScaling;
298 template<typename MatrixType,int Direction> class Homogeneous;
299 
300 // Sparse module:
301 template<typename Derived> class SparseMatrixBase;
302 
303 // MatrixFunctions module
304 template<typename Derived> struct MatrixExponentialReturnValue;
305 template<typename Derived> class MatrixFunctionReturnValue;
306 template<typename Derived> class MatrixSquareRootReturnValue;
307 template<typename Derived> class MatrixLogarithmReturnValue;
308 template<typename Derived> class MatrixPowerReturnValue;
309 template<typename Derived> class MatrixComplexPowerReturnValue;
310 
311 namespace internal {
312 template <typename Scalar>
313 struct stem_function
314 {
315  typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
316  typedef ComplexScalar type(ComplexScalar, int);
317 };
318 }
319 
320 } // end namespace Eigen
321 
322 #endif // EIGEN_FORWARDDECLARATIONS_H
Eigen::Inverse
Expression of the inverse of another expression.
Definition: Inverse.h:43
Eigen
Namespace containing all symbols from the Eigen library.
Definition: Core:134
Eigen::DiagonalMatrix
Represents a diagonal matrix with its storage.
Definition: DiagonalMatrix.h:140
Eigen::PartialPivLU
LU decomposition of a matrix with partial pivoting, and related features.
Definition: ForwardDeclarations.h:269
Eigen::Stride
Holds strides information for Map.
Definition: Stride.h:44
Eigen::Transform
Represents an homogeneous transformation in a N dimensional space.
Definition: ForwardDeclarations.h:294
Eigen::CwiseBinaryOp
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Definition: CwiseBinaryOp.h:77
Eigen::InnerStride
Convenience specialization of Stride to specify only an inner stride See class Map for some examples.
Definition: Stride.h:90
Eigen::SVDBase
Base class of SVD algorithms.
Definition: ForwardDeclarations.h:277
Eigen::AngleAxis
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
Definition: ForwardDeclarations.h:290
Eigen::VectorwiseOp
Pseudo expression providing broadcasting and partial reduction operations.
Definition: ForwardDeclarations.h:264
Eigen::Transpositions
Represents a sequence of transpositions (row/column interchange)
Definition: Transpositions.h:147
Eigen::SelfAdjointView
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
Definition: SelfAdjointView.h:49
Eigen::ArrayWrapper
Expression of a mathematical vector or matrix as an array object.
Definition: ArrayWrapper.h:42
Eigen::RowMajor
@ RowMajor
Definition: Constants.h:320
Eigen::CwiseUnaryView
Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector.
Definition: CwiseUnaryView.h:58
Eigen::JacobiRotation
Rotation given by a cosine-sine pair.
Definition: ForwardDeclarations.h:283
Eigen::FullPivLU
LU decomposition of a matrix with complete pivoting, and related features.
Definition: ForwardDeclarations.h:268
Eigen::AlignedBox
An axis aligned box.
Definition: ForwardDeclarations.h:292
Eigen::Transpose
Expression of the transpose of a matrix.
Definition: Transpose.h:52
Eigen::DirectAccessBit
const unsigned int DirectAccessBit
Definition: Constants.h:154
Eigen::CwiseNullaryOp
Generic expression of a matrix where all coefficients are defined by a functor.
Definition: CwiseNullaryOp.h:60
Eigen::Homogeneous
Expression of one (or a set of) homogeneous vector(s)
Definition: ForwardDeclarations.h:298
Reshaped
Expression of a fixed-size or dynamic-size reshape.
Eigen::FullPivHouseholderQR
Householder rank-revealing QR decomposition of a matrix with full pivoting.
Definition: ForwardDeclarations.h:275
Eigen::DirectAccessors
@ DirectAccessors
Definition: Constants.h:370
Eigen::PermutationWrapper
Class to view a vector of integers as a permutation matrix.
Definition: PermutationMatrix.h:486
Eigen::LvalueBit
const unsigned int LvalueBit
Definition: Constants.h:143
Eigen::TriangularBase
Base class for triangular part in a matrix.
Definition: TriangularMatrix.h:27
Eigen::BDCSVD
class Bidiagonal Divide and Conquer SVD
Definition: ForwardDeclarations.h:279
Eigen::RotationBase
Common base class for compact rotation representations.
Definition: ForwardDeclarations.h:286
Eigen::Diagonal
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:63
Eigen::Reverse
Expression of the reverse of a vector or matrix.
Definition: Reverse.h:63
Eigen::Replicate
Expression of the multiple replication of a matrix or vector.
Definition: Replicate.h:61
Eigen::WithFormat
Pseudo expression providing matrix output with given format.
Definition: IO.h:96
Eigen::Hyperplane
A hyperplane.
Definition: ForwardDeclarations.h:296
Eigen::OuterStride
Convenience specialization of Stride to specify only an outer stride See class Map for some examples.
Definition: Stride.h:101
Eigen::CompleteOrthogonalDecomposition
Complete orthogonal decomposition (COD) of a matrix.
Definition: ForwardDeclarations.h:276
Eigen::Product
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:71
Eigen::LDLT
Robust Cholesky decomposition of a matrix with pivoting.
Definition: LDLT.h:59
Eigen::AutoAlign
@ AutoAlign
Definition: Constants.h:322
Eigen::ColPivHouseholderQR
Householder rank-revealing QR decomposition of a matrix with column-pivoting.
Definition: ForwardDeclarations.h:274
Eigen::Map
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:94
Eigen::DiagonalWrapper
Expression of a diagonal matrix.
Definition: DiagonalMatrix.h:293
Eigen::ParametrizedLine
A parametrized line.
Definition: ForwardDeclarations.h:295
Eigen::ReadOnlyAccessors
@ ReadOnlyAccessors
Definition: Constants.h:366
Eigen::Rotation2D
Represents a rotation/orientation in a 2 dimensional space.
Definition: ForwardDeclarations.h:289
Eigen::JacobiSVD
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: ForwardDeclarations.h:278
Eigen::CwiseTernaryOp
Generic expression where a coefficient-wise ternary operator is applied to two expressions.
Definition: CwiseTernaryOp.h:84
Eigen::Quaternion
The quaternion class used to represent 3D orientations and rotations.
Definition: ForwardDeclarations.h:293
Eigen::LLT
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:66
Eigen::Solve
Pseudo expression representing a solving operation.
Definition: Solve.h:62
Eigen::Ref
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:195
Eigen::PermutationBase
Base class for permutations.
Definition: PermutationMatrix.h:46
Eigen::CwiseUnaryOp
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
Eigen::PermutationMatrix
Permutation matrix.
Definition: PermutationMatrix.h:297
Eigen::CommaInitializer
Helper class used by the comma initializer operator.
Definition: CommaInitializer.h:28
Eigen::VectorBlock
Expression of a fixed-size or dynamic-size sub-vector.
Definition: ForwardDeclarations.h:85
Eigen::SparseView
Expression of a dense or sparse matrix with zero or too small values removed.
Definition: ForwardDeclarations.h:124
Eigen::SparseMatrixBase
Base class of any sparse matrices or sparse expressions.
Definition: ForwardDeclarations.h:301
Eigen::DirectWriteAccessors
@ DirectWriteAccessors
Definition: Constants.h:372
Eigen::Translation
Represents a translation transformation.
Definition: ForwardDeclarations.h:291
Eigen::ColMajor
@ ColMajor
Definition: Constants.h:318
Eigen::MatrixWrapper
Expression of an array as a mathematical vector or matrix.
Definition: ArrayBase.h:15
Eigen::PartialReduxExpr
Generic expression of a partially reduxed matrix.
Definition: ForwardDeclarations.h:263
Eigen::TriangularView
Expression of a triangular part in a matrix.
Definition: TriangularMatrix.h:187
Eigen::WriteAccessors
@ WriteAccessors
Definition: Constants.h:368
Eigen::QuaternionBase
Base class for quaternion expressions.
Definition: ForwardDeclarations.h:288
Eigen::SolverBase
A base class for matrix decomposition and solvers.
Definition: SolverBase.h:68
Eigen::HouseholderQR
Householder QR decomposition of a matrix.
Definition: ForwardDeclarations.h:273
Eigen::HouseholderSequence
Sequence of Householder reflections acting on subspaces with decreasing size.
Definition: ForwardDeclarations.h:282